model = rfm.KumoRFM(graph)
# Forecast 30-day product demand
query = "PREDICT SUM(orders.price, 0, 30, days) FOR items.item_id=1"
prediction_result = model.predict(query)
print(prediction_result)
# Predict customer churn
query = "PREDICT COUNT(orders.*, 0, 90, days)=0 FOR users.user_id IN (42, 123)"
prediction_result = model.predict(query)
print(prediction_result)
# Item recommendation
query = "PREDICT LIST_DISTINCT(orders.item_id, 0, 30, days) RANK TOP 10 FOR users.user_id=123"
df = model.predict(query)
display(df)
# Missing value imputation
query = "PREDICT users.age FOR users.user_id=8"
df = model.predict(query)
display(df)